Search Results for 'interoperability'

Page 2 of 4

Empires of Medical Devices

Even the IoT (Internet of Things) world is concerned about interoperability: Do We Really Want Empires of Connected Things?

Here are a couple of key quotes:

…little hope for open standards or a universal language for how they do that. It’s time for regulatory guidance to make that happen.

…one analyst observed that the industry seems to be forming “walled gardens” rather than a coherent network that encourages openness and interoperability.

Sound familiar? This is the same medical device interoperability struggle that has been going on for over 25 years.  The IoT is still in its infancy and I sure hope they have better luck developing a “common carrier” than we did.

Americans Killed by Medical Errors Today

Current events have sparked popular tweets like this:

deaths-today

As referenced by the West Health To Err is Human: Interoperability is Divine article, based on a 300,000 annual death rate, the following could be added to the list:

Americans killed by medical errors today: 822

This shocking statistic positions medical errors as the third leading cause of death in the United States, behind heart disease and cancer.

Also see Deaths by medical mistakes hit records. Pretty depressing.

This is a complex problem to solve, but reducing preventable deaths with improved patient safety technology should be a priority. No duh!

Interoperable Healthcare

icu-interopThis is a good read: Healthcare Innovation Day 2014: Igniting an Interoperable Healthcare System (warning: PDF).

Healthcare is the one industry that’s been the slowest to adopt the intelligent methods we have in most other parts of our lives. How did the communications revolution that transformed industries such as banking, entertainment and telecom somehow leave healthcare behind?

Great question!

Here’s the ‘Call to Action’ list:

  1. Recognize that the lack of interoperability is a crisis and advocate for rapid change.
  2. Frame the interoperability problem correctly: Everyone is in the business of gathering and sharing data to best serve patients.
  3. Accelerate the full adoption of unambiguous, open standards for interoperability.
  4. Align stakeholder incentives to drive interoperability.
  5. Ensure validity, privacy, and security of data.
  6. Reduce technical complexity for hospitals, health systems, and healthcare workers.
  7. Develop new ways to use data streams that will result from interoperability to drive an adaptive system that will improve patient health.
  8. Guarantee secure access to data for patients, researchers.

There is a lot to do…

Services, Not Sensors

internetofthingsThe Internet Of Things: The Real Money Is The Internet, Not The Things (my highlight):

The trick will be whether hardware companies will push hard enough for standardization so they can capitalize on services revenue. Companies that see themselves as pure hardware manufacturers are likely doomed, but those that see beyond the “things” to instead focus on the services built on the “Internet,” the future is very bright.

Is this the new reality for the medical device industry as well?  If data and interoperability are the future, maybe it should be!

The Internet of Medical Devices

iotThe Internet of Things (IoT) is being propelled by the dramatic reduction in size, power consumption, and cost of networking and computing capability.  Many of the devices listed in the Wolfram Connected Devices Project are health related. “Things” like weight scales and thermometers can make measurements from many objects, but when that object is a human body, they effectively become medical devices. The sensors that come standard on smart phones also fit into this category. All of these network-connected devices that record data from humans make up the Internet of Medical Devices (IoMD).

In most ways the invasion of technology in Healthcare is no different than how mobile digital capability is changing that way we all live. For Healthcare though, the potential benefits of applying these technologies to solve both the cost problem and to improve patient safety and outcomes are tremendous.

The number of technologies and innovations (health tracking apps and devices, home monitoring, medication management, etc.) that are contributing to these goals are too numerous to count. From a medical device perspective there are four primary areas of concern that need to be addressed as the IoMD grows.

1. Interoperability
As I’ve written about many times (e.g. Interoperability: Arrested Progress), health data interoperability is a key factor in realizing both cost reductions and improved patient outcomes. Unfortunately, medical data is notoriously complex, which makes effective communication between systems very difficult.

Another significant barrier to interoperability are EHR interfaces. The issue is that each EMR vendor has a propitiatory interface for consuming device data and associating it with a patient record.  Without a direct device interface, data has to be manually transcribed into the record which is expensive and error prone.

This is a particular problem in the ambulatory EMR market because there are literally hundreds of vendors.  Even if they all used a standard like HL7 there is still interfacing work that has to be done for each one.  It is prohibitively expensive for any device company to develop and maintain that many interfaces.

2. Patient Safety
Because proper handling and presentation of medical data pose a safety risk the FDA has recently stepped in:

Most medical software applications, like the ones you might download to your Apple or Android phone, will not be affected by these regulations.

3. Privacy
Even though PHI (Protected Health Information) is protected by Health Information Privacy (HIPAA) laws most people consider their health a very private issue.  Privacy concerns are a significant psychological barrier that must be overcome before sharing of medical data becomes commonplace.

4. Security

Reports like the one described in The Internet Of Things Has Been Hacked, And It’s Turning Nasty are not encouraging:

Pinging one device brought up a login screen that said: Welcome To Your Fridge. She typed in a default password—something like “admin” or “adminadmin,” Knight said—and suddenly had access to the heart of someone’s kitchen.

The IoMD is not immune from this. Hacking Insulin Pumps And Other Medical Devices From Black Hat was big news last year. <TongueInCheek>If we’re not careful search engines like Shodan will soon be discovering pace makers near real hearts!</TongueInCheek>

Final Notes

  1. The interoperability issue is not a technical problem per se. It reminds me of the challenges associated with an object-relational impedance mismatch (“Deceptive Similarities, Subtle Differences”).  Also, not only are our models of human-derived data imperfect, but two models created for the same thing will most likely be different.
  2. The IoMD must convince the public that their data is safe and secure.
  3. If mobile medical applications and connected health monitoring devices are going to contribute to a more effective Healthcare delivery system they must be able to reliably and securely communicate the data they collect to an appropriate care provider.

UPDATE (1/25/14): Also see: Digital Health In 2014: The Imperative Of Connectivity

UPDATE (2/19/14): I like “Medical Internet of Things” (mIOT) too: Keeping medical device designs relevant in a big data world migrating to outcomes-driven payment models.

The Importance of Software Development in Medical Device Industry Growth

The bottom line of the article Software Development Must Be Overhauled to Drive Growth in the Medical Device Industry is summed up by this:

The power and reach of converging IT trends means that business leaders need to understand the implications of a software-driven, connected-everything world.

The context of this statement is broad (“Technology Vision”), but it is still a driving force for the Medical Device industry.  Certainly connected-everything, i.e. interoperability, has been an elusive goal (I’m being kind) for medical devices and data systems.

The Accenture report notes the following three Medical Device Industry market trends:

  1. Complexity of medical devices and how software has become a key differentiating success factor.
  2. Growing demand for mobile access to patient data and clinical systems.
  3. The importance and complexity of global markets when creating appropriate software for medical equipment products.

The use of Waterfall vs. Agile methodologies and other software development operating models (“Software Factories”, Outsourcing, etc.) is really dependent on an organization’s culture.  The biggest challenge any company has in this regard is change. Even after the business recognizes the need to “restructure” operations, this is usually easier said than done.

A good example of Medical Device Open Source software is the West Health Institute Medical Device Interoperability project which is developing Standards-based embedded software.  The OSS, Cloud, and “Module Care” sections only touched briefly on regulatory issues. For FDA regulated software there are significant design, risk, testing, and validation requirements that must taken into consideration when incorporating any 3rd party software. Further discussion is here: Open Source Medical Device Connectivity.

Just like many other industries, software is a critical component in Healthcare related products. I think most Medical Device companies already know this. Making software development more efficient (cost-effective) and flexible (to meet ever-changing market needs) while maintaining quality, performance, and security requirements is a difficult balancing act.

Third Annual Medical Device Connectivity Conference

This year’s Medical Device Connectivity Conference is less than a month away. It’s being held Sept. 8-9, 2010 in Boston.


In addition to the post-conference workshops, there is also a special preconference event: an open house at the Medical Device Plug and Play Interoperability program’s lab. September 7, from 4pm to 6pm attendees can tour the lab, interact with various demonstrations and chat with program staff.

Tim has put together another great conference.

Medical Devices and the Cloud

The article Is Cloud the tomorrow of Medical Devices Industry? includes some of the challenges — regulatory, privacy, security etc. — faced by manufacturers trying to manage medical device data in the cloud. You can’t disagree with this statement:

The success of the vision of Smart Connected Health Grid is dependent on wide scale adoption of cloud computing in all areas of healthcare.

There’s no doubt that adoption of cloud-based technologies are starting to provide concrete market opportunities in the Healthcare space.

There are also two major market barriers that will have to addressed in order for the cloud’s full potential to be realized:

1. Who’s going to pay for it?

  • The Apple/Google/Facebook “created a marketplace around the end consumer” model will not work in the medical industry.  Consumers do not manage their own healthcare, and certainly not their medical data.
  • Glucose monitoring is also not a good model. Strips and meters are reimbursed by Medicare and most private insurers.
  • The “Service Delivery Platform” may be a great idea, but unless you can prove its effectiveness at saving money in the overall healthcare delivery system it has only limited value.
  • Proving this effectiveness is difficult to do, and the bar is very high on the expected returns for preventative care.  Maybe this is where the vertically integrated Accountable Care Organizations (ACO) could have an impact?
  • The end consumer (re: their willingness to spend money anyway) is not likely to be part of the revenue generation equation.

2. Interoperability.

  • You can’t overstate connected in “Connected Health Grid.”  This is where the real value is.
  • Data collected from a medical device must be put into context with all of the available health data in order to properly access a patient’s current state.
  • This means you have to make the device data that resides in your cloud available to be consumed by others, e.g. payers, PHRs, hospital EMR systems, etc.  Each of these interfaces is unique and costly. HIPAA is also key barrier here.
  • There are many technical issues surrounding medical device connectivity. I’ve written frequently about these interoperability topics in the past.

The potential is there, but IMO creating a value proposition that will result in a sustainable market based on a technology alone will probably not work. It’s the old “hammer looking for a nail” problem.

Medical device data combined with cloud-based technology will be part of many effective healthcare solutions. Some of these may actually make money, someday.

Why Healthcare IT is Not a Game Changer

Last week I attended the WLSA/Continua Mobile Healthcare Symposium and the opening day of the Continua Health Alliance Winter Summit 2010.  Also, a couple of weeks ago I attended a few of the FDA Workshop on Medical Device Interoperability: Achieving Safety and Effectiveness sessions via a Webcast*.

Since I’m not going to HIMSS in Atlanta this year (starts Mar. 1) I thought now would be a good time to do some venting.

I’ve talked about HIT problems before, e.g. Healthcare Un-Interoperability and The EMR-Medical Devices Mess. With all of the ARRA/HITECH talk along with the National Healthcare debate raging it made me wonder how the issues facing device interoperability, wireless Healthcare, and HIT in general really fit in to the bigger picture.

After sitting though multiple sessions on a wide variety of topics presented by smart people the obvious hit me in the face:  The complexity of the issues are mind numbing. Everybody has good (and even great) ideas, but nobody has real solutions. Why is it that all this good HIT hasn’t translated into meaningful improvements in Healthcare?

For example. At first I thought the talk by Dr. Patrick Soon-Shiong might be heading somewhere interesting.  He presented a well structured view of the current Healthcare landscape that seemed to make a lot of sense. Then he plunged into the abyss with an in-depth discussion of transformational technologies (molecular data mining, Visual Evoked Potentials, etc.).  These developments could potentially lead to improvements in people’s health, but we never got to hear how any of the complex Healthcare delivery issues were going to be addressed.

Among his many endeavors Dr. Soon-Shiong is Chairman of  the National Coalition for Health Integration (NCHI). I think the “Zone of Complexity” point of view (see here — warning PDF) is a good starting point for understanding the position that Healthcare IT is in:

Also, following the diagram above is this statement:

However, currently, even when information is in digital formats, data are not accessible because they reside in different “silos” within and between organizations. In turn, the U.S. health system is hampered by inefficient virtual organizations that lack the mechanisms needed to engage in coordinated action.

The NCHI Integrated Health Platform (grid computing) is a good idea, but does it really even begin to provide the solution to these complex problems?

  1. They are taking a “bottom-up” approach to interoperability (system, data , and process) and trying to leverage existing technologies (like DICOM and HL7).  Makes sense. But other than academic or government institutions what’s the incentive for private  companies (like EMRs) to participate?
  2. How is an improved underlying infrastructure going to reduce the chaotic nature of the health delivery system (hospitals, insurance companies, Medicare, etc.)? It’s like putting the cart before the horse.

This is the dilemma. We can come up with clever and even ingenious technical solutions in our little IT world, but none of them are going to be game changers.   The availability of a great technologies are not enough to change the institutional processes that make an organization inefficient or communication ineffective.

The solution is in the people and the processes they follow. The best example I can think of is EMR adoption. Everybody knows why the rate of conversion from a paper to a paperless office is so low.  It’s mostly because of people’s resistance to change the way they’ve “always done it.”  Change is hard, and in this case HIT is the barrier to adoption, no mater how good the EMR solution is.

At the national level Healthcare IT only enables interoperability and improved data management.  The chaos can only be solved by first changing U.S. Healthcare delivery policies.  Whatever the changes are, they will then determine the incentives and processes that actually drive the system and put HIT to use.

For Healthcare IT, the NCHI is just one example. There are a whole bunch of other technology-driven initiatives that also have high hopes.  I’m not saying we should stop developing great technologies.  We just shouldn’t be surprised when they don’t change the world.

Happy Presidents Day!

UPDATE (8/4/10): Martin Fowler’s UtilityVsStrategicDichotomy post is another perspective on “IT Doesn’t Matter”.

*I thought the Webcast was very well done.  It had split screen (speaker and slides) along with multiple camera views that included the audience. The video quality wasn’t great (it really didn’t need to be) but the streaming was reliable.  Also, the web participants could chat among themselves and the on-site staff and ask the speaker questions.

Ch-ch-ch-changes

About the only thing you can count on in this world, besides taxes and death, is change.

When we moved from Madison to San Diego in 2005, that was a big change. Of course in Jan/Feb the 70 deg temperature difference makes that decision seem pretty smart. When our 12 y/o golden retriever Miles passed away this past Oct. that change really sucked.

Switching jobs is also a big change.  As I’ve previously discussed, my old company was purchased and I chose not to relocate. As soon as wrote the words “in-the-trenches” I had an inkling that I had probably jinxed myself. Maybe jinxed isn’t the right word, but I certainly ended up in a different situation than I had imagined.

Last week I started working as a Health Informatics Architect at ResMed, a global leader in sleep medicine and non-invasive ventilation.  Like all medical device companies, ResMed is faced with the daunting challenge of providing the therapeutic data produced by their flow generators to physicians and healthcare organizations.

This position will allow me to continue to develop solutions for medical device interoperability, but at a whole new level. Working with a global team at a world-class company is a very exciting opportunity. I’m looking forward to the challenges ahead.

This change is good!

Subscribe

Categories

Twitter Updates